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Abstract
We construct boundary states in SU(2)k WZNW models using the bosonized
Wakimoto free-field representation and study their properties. We introduce
a Fock space representation of Ishibashi states which are coherent states of
bosons with zero-mode momenta (boundary Coulomb-gas charges) summed
over certain lattices according to Fock space resolution of SU(2)k . The Virasoro
invariance of the coherent states leads to families of boundary states including
the B-type D-branes found by Maldacena, Moore and Seiberg as well as the
A-type corresponding to trivial current gluing conditions. We then use the
Coulomb-gas technique to compute exact correlation functions of WZNW
primary fields on the disk topology with A- and B-type Cardy states on the
boundary. We check that the obtained chiral blocks for A-branes are solutions
of the Knizhnik–Zamolodchikov equations.

PACS numbers: 11.25.Hf, 11.25.Uv, 68.35.Rh

1. Introduction

Conformal field theory (CFT) on a group manifold provides an excellent test ground for
the study of strings on curved backgrounds. Such models are exactly solvable due to large
symmetries, while they are non-trivial enough to exhibit the peculiarity of curved target
spaces. In recent years, D-branes in Wess–Zumino–Novikov–Witten (WZNW) models have
been investigated by many authors, and remarkable progress has been made [1–12]. In
particular, it is now understood that possible locations for stable branes are quantized, and the
branes wrap conjugacy classes of the group manifold [13–15]. From the world-sheet point of
view, branes are boundaries of a two-dimensional manifold. The world-sheet description is
then a boundary CFT, where the branes correspond to specific states, called boundary states.
The CFT analysis of D-branes is based on the algebraic formulation of boundary states for
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rational conformal theories, dating back to the work of Cardy and Ishibashi [16, 17]. For
rational models, operator product expansions involving boundary and various duality relations
among the coupling constants were studied in [18–20]. Hence, at least for simple rational CFT
models using the algebraic consistency conditions one can find which D-branes are allowed in
a given closed-string background. It is an important open problem to generalize such analysis
to more complicated theories, including non-rational models.

In this paper, we reconsider D-branes on WZNW backgrounds from a somewhat different
perspective. CFT can also be formulated using the free-field (Coulomb-gas) representation
[21–23], which is in a sense complementary to the algebraic approach. The free-field approach
allows one to compute exact correlation functions in a constructive manner—assembling
pieces and finding integral expressions—without having to solve complicated Knizhnik–
Zamolodchikov equations [24]. Instead, one needs to work out the cohomology of the screen
charges. The Coulomb-gas formalism has recently been extended to include boundary states,
in the case of Virasoro minimal models [25, 26] and in the case of CFTs with W -algebra
symmetries [27]. The present paper deals with a free-field formulation of boundary states
on a WZNW background. This should provide a concrete representation of D-branes and
should also be useful for computing exact correlation functions. Indeed, such a free-field
description of branes for the U(1)k WNZW model is well known [10, 28, 29]. The U(1)k
model corresponds to a free boson compactified on a circle of radius R = √

2k (where k is
a positive integer), allowing an extended symmetry so that the CFT becomes rational. The
primary fields are then indexed by an integer r which is defined modulo 2k. The boundary
state construction starts from finding a basis, the Ishibashi states. They are coherent states of
a bosonic field, with the ground state momenta summed over certain lattices. Corresponding
to the 2k primary fields of U(1)k , there are [29] 2k A-type Ishibashi states

|A; r〉〉U(1) =
∏
n>0

e
1
n
a−nā−n

∑
�∈Z

∣∣∣∣ r + 2k�√
2k

,
r + 2k�√

2k

〉
, (1)

where an and ān are holomorphic and anti-holomorphic Heisenberg operators; the ground
states |∗, ∗〉 are parametrized by the left- and right-moving momenta (holomorphic and anti-
holomorphic boundary charges). Our convention is r = 0, . . . , 2k − 1. By a T-duality
transformation along the circle, the A-type states are related to 2k B-type Ishibashi states

|B; r〉〉U(1) =
∏
n>0

e− 1
n
a−nā−n

∑
�∈Z

∣∣∣∣ r + 2k�√
2k

,− r + 2k�√
2k

〉
. (2)

From the 2k A-type Ishibashi states, one can construct 2k A-type Cardy states

|Ã; r〉U(1) = (2k)−
1
4

2k−1∑
s=0

e−π irs/k|A; s〉〉U(1), (3)

which are interpreted as D0-branes at 2k special points on the circle. The B-type Cardy states
are linear combinations of only two of the 2k B-type Ishibashi states

|B̃; η〉U(1) =
(

k

2

) 1
4

(|B; 0〉〉U(1) + η|B; k〉〉U(1)), (4)

where η = ±1. The other 2k − 2 B-type Ishibashi states decouple from the theory3. These
B-type Cardy states are interpreted as D1-branes with a Wilson line parametrized by η. The

3 In the standard language the A-type states defined above are Dirichlet and the B-type states are Neumann. It
is, however, more natural to define them according to their coupling to bulk operators, and then the distinction of
A- and B-branes depends on the convention of how we define the non-chiral (left × right) bulk operators. This point
is discussed in section 3.
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main goal of this paper is to construct a similar free-field representation of the SU(2)k branes
by finding a Fock space representation of the boundary states for the parafermion part of
SU(2)k . In contrast to the U(1)k part where the momenta are made periodic by the infinite
sum over the identified values in (1) and (2), the momentum summation for the parafermion
part is much more complicated. This is because the sum over momenta becomes a lattice sum
with a non-trivial truncation of null vectors. Such null vector structures must be examined
carefully in order that the boundary states satisfy the Cardy condition. We argue that for the
SU(2)k model the momenta should be summed over a lattice which is basically a Kaluza–Klein
tower but modified according to the structure of null vectors; in the Coulomb-gas terminology
such a lattice sum is over the genus one Felder complex arising from the Fock space resolution
of the spectra on the torus.

The idea of realizing WZNW branes in the Wakimoto free-field representation is not new.
The A-branes of the SU(2)k model are constructed using the standard Wakimoto representation
in [30] (see also [31]) and their BRST property is discussed in [32]. The novelty of this paper is
a more general treatment, which naturally includes the B-branes of SU(2)k found in [10] (see
[29, 33–36] for general discussions), and the computational method to obtain exact correlation
functions of bulk primary operators using the Coulomb-gas screening charges. For these
purposes we shall employ a bosonic version of the Wakimoto construction, which renders the
symmetry of the model more transparent.

The free-field realization of branes gives another technical tool for calculations—
sometimes a more convenient one than the other approaches. For example, in the Coulomb-gas
formalism correlation functions involving such branes may, in principle, be generalized to
arbitrary topology by sewing smaller diagrams together; on the other hand solving Knizhnik–
Zamolodchikov equations for higher topologies is notoriously difficult.

The plan of this paper is as follows. In the next section we review the bosonized Wakimoto
free-field representation of WZNW models and collect necessary ingredients for the following
discussions. In section 3 we construct boundary states of the SU(2)k and the parafermion
SU(2)k/U(1)k models using the free-field representation. We present sample computations
of correlation functions involving the boundary states in section 4. We summarize the results
and conclude in section 5.

2. Bosonic Wakimoto representation of the SU (2)k WNZW model

In this section we review the Coulomb-gas representation of the SU(2)k WNZW model
[37–47]. We follow the bosonic construction of [42–47] which emphasizes the fact that
SU(2)k can be written as a product of Zk parafermions and an U(1)k boson. We shall spell out
anti-holomorphic expressions explicitly when they differ from the holomorphic counterparts,
as they will be necessary for discussing boundary states.

2.1. Wakimoto free-field representation and bosonization

We start from the Gauss decomposition of the group element g in SL(2, C),

g =
(

1 γ̄

0 1

) (
eϕ̃ 0
0 e−ϕ̃

) (
1 0
γ 1

)
. (5)

This leads to the Wakimoto representation of the SU(2) currents J = kg−1∂g and J̄ =
−k(∂̄g)g−1, that is [30, 47]

J + = β, (6)
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J− = i
√

2(k + 2)∂ϕγ − k∂γ − βγ 2, (7)

J 3 = −i

√
k + 2

2
∂ϕ + γβ, (8)

and

J̄ + = −i
√

2(k + 2)∂̄ϕ̄γ̄ + k∂̄γ̄ + β̄γ̄ 2, (9)

J̄− = −β̄, (10)

J̄ 3 = i

√
k + 2

2
∂̄ ϕ̄ − γ̄ β̄, (11)

where the usual right-nested normal ordering is implicit. The fields β and β̄ have been
introduced as auxiliary fields. ϕ̃ has been rescaled and ϕ, ϕ̄ are respectively its holomorphic
and anti-holomorphic part. These currents and Sugawara stress tensor generate the SU(2)

affine Lie algebra

T (z)T (z′) ∼ c/2

(z − z′)4
+

2T (z′)
(z − z′)2

+
∂T (z′)
(z − z′)

, (12)

T (z)J a(z′) ∼ J a(z′)
(z − z′)2

+
∂J a(z′)
(z − z′)

, (13)

J a(z)J b(z′) ∼ (k/2)δab

(z − z′)2
+

if ab
c

(z − z′)
J c(z′), (14)

and likewise for the anti-holomorphic part, with central charge

c = 3k

k + 2
(15)

and structure constants f 12
3 = f 23

1 = f 31
2 = 1. The Wakimoto free-fields have operator

products

ϕ(z)ϕ(z′) ∼ −ln(z − z′), β(z)γ (z′) ∼ −1

z − z′ , γ (z)β(z′) ∼ 1

z − z′ , (16)

and similarly for ϕ̄, β̄ and γ̄ . We bosonize the β–γ system

β = −i∂χ eη−iχ , (17)

γ = e−η+iχ (18)

and redefine the fields by a linear transformation

φ(1) = ϕ − i

√
k + 2

2
η −

√
k + 2

2
χ,

φ(2) = i

√
k + 2

k
ϕ +

k + 2√
2k

η − i

√
k

2
χ, (19)

φ(3) = −
√

k + 2

k
ϕ + i

√
2

k
η.

Our convention for the operator products between the new bosonic fields is

φ(i)(z)φ(j)(z′) ∼ −δij ln(z − z′), (20)
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where the indices i and j run 1, 2, 3. After the redefinition, the holomorphic parts of the chiral
current take the form:

J +(z) = −
√

k�(z) ei
√

2
k
φ(3)

, J−(z) = −
√

k�†(z) e−i
√

2
k
φ(3)

, J 3(z) = i

√
k

2
∂φ(3),

(21)

where �(z) and �†(z) are the parafermion currents,

�(z) = 1√
2

(
−i

√
k + 2

k
∂φ(1) + ∂φ(2)

)
e
√

2
k
φ(2)

,

(22)

�†(z) = 1√
2

(
−i

√
k + 2

k
∂φ(1) − ∂φ(2)

)
e−

√
2
k
φ(2)

.

Thus the two bosons φ(1) and φ(2) constitute the bosonic representation of the Zk parafermions,
whereas the U(1)k part is represented by φ(3).

The stress tensor takes the form:

T (z) = − 1
2δij ∂φ(i)∂φ(j) + 2iα0∂

2φ(1) = − 1
2∂φ · ∂φ + 2iα0ρ · ∂2φ, (23)

where

α0 = 1

2
√

2(k + 2)
(24)

and ρ = (1, 0, 0).
Bosonization of the anti-holomorphic fields

β̄ = i∂̄ χ̄ eη̄+iχ̄ , (25)

γ̄ = e−η̄−iχ̄ , (26)

and redefinition of the fields

φ̄(1) = ϕ̄ − i

√
k + 2

2
η̄ +

√
k + 2

2
χ̄ ,

φ̄(2) = i

√
k + 2

k
ϕ̄ +

k + 2√
2k

η̄ + i

√
k

2
χ̄ , (27)

φ̄(3) = −
√

k + 2

k
ϕ̄ + i

√
2

k
η̄,

lead to bosonic expressions of the anti-holomorphic currents and the stress tensor

J̄ +(z̄) =
(

−i

√
k + 2

2
∂̄ φ̄(1) −

√
k

2
∂̄ φ̄(2)

)
e−

√
2
k
(φ̄(2)+iφ̄(3)),

J̄−(z̄) =
(

−i

√
k + 2

2
∂̄ φ̄(1) +

√
k

2
∂̄ φ̄(2)

)
e
√

2
k
(φ̄(2)+iφ̄(3)),

J̄ 3(z̄) = −i

√
k

2
∂̄ φ̄(3), (28)

T̄ (z̄) = −1

2
∂̄ φ̄ · ∂̄ φ̄ + 2iα0ρ · ∂̄2φ̄. (29)

From the form of the stress tensor (29), it is obvious that flipping and rotating the bosonic
fields in the directions of φ̄(2) and φ̄(3) leave the stress tensor invariant. To be more specific,
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we define transformations ω of the anti-holomorphic bosonic fields φ̄(i) which operate trivially
on φ̄(1) but linearly transform the remaining two components

ω :

φ̄(1)

φ̄(2)

φ̄(3)

 �→
1 0 0

0
0

M̃

 φ̄(1)

φ̄(2)

φ̄(3)

 , (30)

where M̃ is a 2 × 2 matrix. The invariance of T̄ (z̄) implies that M̃ must be orthogonal4,
M̃T M̃ = 1. Under the transformations ω, the anti-holomorphic SU(2) currents are not
invariant. We shall denote the transformed currents as

�J̄ a(z̄) = J̄ a(ωφ̄(i)(z̄)). (31)

That is, �J̄ a(z̄) are the currents constructed as (28) but with the transformed bosonic fields
ωφ̄(i) instead of φ̄(i). Note that

�J̄± = J̄±, �J̄ 3 = J̄ 3 (32)

for M̃ = diag(1, 1) and

�J̄± = J̄∓, �J̄ 3 = −J̄ 3 (33)

for M̃ = diag(−1,−1). In general, �J̄ a cannot be written in a simple form.
The chiral SU(2) primary fields �j,m(z) with isospin j and magnetic quantum number

m are represented by the vertex operators

Vj,m(z) = Kj,m exp(iαj,m · φ(z)), (34)

where Kj,m = [(2j)!/(j + m)!(j − m)!]1/2 and

αj,m =
(

−j

√
2

k + 2
,−im

√
2

k
,m

√
2

k

)
. (35)

Using operator products with the stress tensor, their conformal dimensions are verified to be

hj,m = 1

2
αj,m · (αj,m − 4α0ρ) = j (j + 1)

k + 2
. (36)

The same primary field �j,m(z) can also be represented by another vertex operator

V
†
j,m(z) = Kj,m exp

(
iα†

j,mφ(z)
)
, (37)

where the conjugate charge α
†
j,m is

α
†
j,m = 4α0ρ − αj,−m =

(
(1 + j)

√
2

k + 2
,−im

√
2

k
,m

√
2

k

)
. (38)

The equivalence of Vj,m(z) and V
†
j,m(z) is a basic feature of the Coulomb-gas formalism. It can

be used to minimize the number of screening operators required for non-vanishing correlation
functions. In the SU(2)k model this is related to the equivalence of �j,m(z) and �k

2 −j, k
2 +m(z)

which is sometimes called spectral flow identification.
Non-chiral (left × right) vertex operators are simply direct products of chiral operators,

but since there are two equivalent vertex operator representations for a single chiral field, there
are four ways to express a non-chiral primary field �j,m(z, z̄):

Vj,m(z)V̄j,m(z̄), Vj,m(z)V̄
†
j,m(z̄),

(39)
V

†
j,m(z)V̄j,m(z̄), V

†
j,m(z)V̄

†
j,m(z̄),

where the right-moving part of the vertex operators are

V̄j,m(z̄) = Kj,m exp(iαj,m · φ̄(z̄)), V̄
†
j,m(z̄) = Kj,m exp

(
iα†

j,m · φ̄(z̄)
)
. (40)

4 It may be more natural to consider ω as antilinear transformations and M̃ (and also M in section 3) being
(anti-)unitary, so that the rotation between φ̄(2) and φ̄(3) is interpreted as SU(2) rotation within conjugacy classes.
This should lead to a different choice of basis in the Hilbert space of the anti-holomorphic sector (see section 5).
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2.2. Truncation of Fock modules and characters

The key element of the free-field formalism is the screening operators which control the
structure of singular vectors. They are used for finding integral expressions of correlation
functions, and are also used to construct Felder’s BRST operators whereby physical spectra
of CFT are realized as their cohomology spaces [42, 48–51].

We focus on the parafermion part of SU(2)k , as the U(1)k part is trivial. The parafermion
primary fields �PF

l,n(z) labelled by two integers l = 0, 1, . . . , k and n = −k,−k + 1, . . . , k − 1
are represented by vertex operators

V PF
l,n (z) = KPF

l,n exp

{
− il√

2(k + 2)
φ(1) +

n√
2k

φ(2)

}
, (41)

for −l � n � l. The normalization constant is KPF
l,n = [l!/((l+n)/2)!((l−n)/2)!]1/2. Viewing

the parafermions independently, as opposed to as a part of SU(2)k , there are also operators
�PF

l,n(z) with n > l. They are obtained by successive application of �(z) on (41). Acting on
the vacuum, the vertex operators V PF

l,n generate a state space, the Fock module Fl,n.
There are three screening operators

Q1 =
∮

dzV1(z), Q± =
∮

dzV±(z), (42)

where

V1(z) = ∂φ(2) exp

{
i

√
2

k + 2
φ(1)

}
, (43)

V±(z) = exp

{
−i

√
k + 2

2
φ(1) ±

√
k

2
φ(2)

}
. (44)

These screening operators satisfy the relations

Q2
+ = Q2

− = 0, Q+Q− + (−1)kQ−Q+ = 0, Q±Q1 + Q1Q± = 0. (45)

The screening operators act on the Fock module Fl,n as

Q±Fl,n = Fl+k+2,n±k, QrFl,n = Fl−2r,n, (46)

where

Qr = 1

r

e
2π ir
k+2 − 1

e
2π i
k+2 − 1

∮
dz1 · · ·

∮
dzrV1(z1) · · · V1(zr), (47)

with the contours following Felder’s convention [48]. Repeated application of these operators
on the Fock modules generates an infinite diagram CPF (figure 1). The physical spectrum in
the parafermion module is expected to be realized by the cohomology space

KerQ+ ∩ KerQ−
ImQ+Q−

∩ KerQl+1

ImQk−l+1 ∩ KerQl+1
. (48)

The characters (string functions) of the parafermion modules are calculated in [42, 44, 46]. By
assuming that the cohomology of (KerQ+ ∩ KerQ−)/ImQ+Q− is trivial on the Fock module
Fr,s except for (r, s) = (l, n), the characters are found to be

χPF
l,n(τ ) = Tr KerQ+∩KerQ−

ImQ+Q− (Fl,n)
qL0− c

24 = 1

η(τ)2

∑
n1,n2∈Z/2
n1−n2∈Z

n1�|n2|,−n1>|n2|

(−1)2n1 sign(n1)q
(l+1+2(k+2)n1)2

4(k+2)
− (n+2kn2)2

4k ,

(49)



5816 S Hemming et al

F−l−2,n+2k Fl,n+2k

Ql+1
F2k−l+2,n+2k

Qk−l+1 · · ·Ql+1

Fl−k−2,n+k Fk−l,n+k

Qk−l+1
Fl+k+2,n+k

Ql+1 Qk−l+1

F−l−2,n Fl,n

Ql+1
F2k−l+2,n

Qk−l+1 Ql+1

Fl−k−2,n−k Fk−l,n−k

Qk−l+1
Fl+k+2,n−k

Ql+1 · · ·Qk−l+1

F l 2,n 2k Fl,n 2k

Ql+1
F2k l+2,n 2k

Qk−l+1 Ql+1

Figure 1. A part of the infinite diagram CPF generated by Ql+1, Qk−l+1 and Q± for the parafermion
module. The solid and dotted arrows indicate the operations with Q+ and Q−, respectively.

where q = exp(2π iτ). The lattice sum is made for both n1 � |n2| and n1 < −|n2| wedges,
and we define sign(0) = +1. This expression agrees with the parafermion character formula
obtained by other means [52, 53].

The SU(2)k character for the isospin j representation is constructed from the parafermion
characters as [10, 42, 54]

χ
SU(2)
j (τ ) = 1

η(τ)

∑
n

∑
n3∈Z

χPF
2j,nq

k(n3+ n
2k

)2
. (50)

The equivalence of this expression and the well-known SU(2)k character formula

χ
SU(2)
j = �2j+1,k+2 − �−2j−1,k+2

�1,2 − �−1,2
, (51)

is shown for example in appendix A of [42]. We use the Dedekind eta and Jacobi theta
functions defined by

η(τ) = q
1
24

∞∏
n=1

(1 − qn), (52)

�λ,µ(τ ) =
∑
n∈Z

q(2µn+λ)2/4µ. (53)

3. Fock space representation of boundary states

The boundary states for D-branes in WZNW models have to satisfy consistency conditions.
One of them is the Ishibashi condition, i.e. the conservation of energy momentum across the
boundary. Second, they must give appropriate overlaps for bulk chiral representations of the
CFT. In this section we find the boundary states satisfying these conditions for the SU(2)k
model. A nice feature of working in the free-field Coulomb-gas approach is that we can start
from a coherent state ansatz, as in the case of string theory in a flat background [55–57] (for
an introductory review, see, e.g. [58, 59]).
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3.1. Construction of A-type SU(2)k boundary states

We consider the (non-chiral) Fock spaces of the bosons φ(i) and φ̄(i) discussed in the previous
section. The mode operators are defined through the expansion

φ(i)(z) = ϕ
(i)
0 − ia(i)

0 ln z + i
∑
n�=0

a(i)
n

n
z−n, (54)

where z is a complex coordinate of the full plane. We assume the standard radial quantization
on the z-plane and the mode operators satisfy the Heisenberg algebra[

a(i)
m , a(j)

n

] = mδij δm+n,0,
[
ϕ

(i)
0 , a

(j)

0

] = iδij . (55)

The anti-holomorphic counterpart φ̄(i)(z̄) is expanded similarly, and the mode operators satisfy
the same algebra. The holomorphic and anti-holomorphic Heisenberg operators are assumed
to be independent. In particular,

[
ϕ

(i)
0 , ā

(j)

0

] = [
ϕ̄

(i)
0 , a

(j)

0

] = 0. We denote the ground
states of the Fock spaces as |α, ᾱ;α0〉 = |α(i), ᾱ(i);α0〉, which are annihilated by the positive
modes a

(i)
n>0, ā

(i)
n>0, and α(i) and ᾱ(i) are eigenvalues of the zero-mode momenta

a
(i)
0 |α, ᾱ;α0〉 = α(i)|α, ᾱ;α0〉, ā

(i)
0 |α, ᾱ;α0〉 = ᾱ(i)|α, ᾱ;α0〉. (56)

These ground states are regarded as being constructed on the SL(2, C) invariant vacuum
|0, 0;α0〉 (α0 is to remind the existence of the non-trivial background charge) by applying the
vertex operators

|α, ᾱ;α0〉 = lim
z,z̄→0

Vα(z)V̄ᾱ(z̄)|0, 0;α0〉 = eiα·ϕ0 eiᾱ·ϕ̄0 |0, 0;α0〉, (57)

where

Vα(z) = eiα·φ(z), V̄ᾱ(z̄) = eiᾱ·φ̄(z̄). (58)

The Fock spaces are generated on these ground states by operating with the negative mode
operators a

(i)
n<0 and ā

(i)
n<0. The corresponding bra ground states are given by

〈α, ᾱ;α0| = 〈0, 0;α0|e−iα·ϕ0 e−iᾱ·ϕ̄0 . (59)

Note the difference of signs in the exponents of (57) and (59). The coefficients of iϕ0

(iϕ̄0) in the exponents are the left-moving (right-moving) zero-mode momenta (holomorphic
(anti-holomorphic) Coulomb-gas charges in the Coulomb-gas language) and are subject
to momentum conservation (charge neutrality condition in Coulomb-gas). The ket states
|α, ᾱ;α0〉 are thus interpreted to have momenta α and ᾱ, whereas the momenta of the bra
states 〈α, ᾱ;α0| are −α and −ᾱ. With these definitions the momentum conservation demands
the ground states being orthogonal, and we normalize them as 〈α, ᾱ;α0|β, β̄;α0〉 = δαβδᾱβ̄ .
The value of α0 is common since it is fixed by (24).

Expanding the stress tensor (23) in powers of z, we find the Virasoro operators

Ln = 1

2

∑
m∈Z

: am · an−m : −2α0(n + 1)ρ · an. (60)

We look for states5 |B〉 satisfying the Ishibashi condition

(Ln − L̄−n)|B〉 = 0, (61)

in the Fock spaces introduced above. We make a coherent state ansatz [27]

|B(α, ᾱ,�)〉 = C�|α, ᾱ;α0〉, (62)

5 The B stands for boundary here. We hope no confusion arises with the B-type boundary states.
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C� =
∏
m>0

exp

(
1

m
a−m · � · ā−m

)
, (63)

where � acts on the three components of the bosonic field as a 3 × 3 matrix. Explicit
calculation using the Baker-Campbell-Hausdorff formula shows that the boundary condition
(61) implies

�T · � = I, (64)

� · ρ + ρ = 0, (65)

�T · α + 4α0ρ − ᾱ = 0. (66)

From (64) and (65), we find that � is of the form:

� = −
1 0 0

0
0

M

 , (67)

where M is a 2 × 2 orthogonal matrix. As the right-moving momenta are related to the
left-moving ones through (66), we introduce an abbreviated notation of states

|B(α,�)〉 ≡ |B(α,�T · α + 4α0ρ,�)〉, (68)

where � is given by (67). The corresponding bra states are

〈B(α,�)| = 〈α,�T · α + 4α0ρ;α0|CT
�, (69)

where

CT
� =

∏
m>0

exp

(
1

m
am · � · ām

)
. (70)

The overlaps between these states are computed using the free-field representation as

〈B(α,�)|q 1
2 (L0+L̄0− c

12 )|B(β,�′)〉 = q
1
2 (α−2α0ρ)2− 1

8∏
m>0 det(1 − qm�T · �′)

δα,βδ�T ·α,�′T ·β. (71)

The states (68), (69) constructed above certainly satisfy the Ishibashi condition (61).
However, they are not boundary states of the CFT. Having no restriction on α means that some
of the states are spurious. Physical states must be part of the cohomology of the screening
operators, i.e. elements of the Felder complex. This is related to the requirement that boundary
states must give overlaps which are partition functions for (irreducible) representations of the
chiral algebra. Thus, we will instead consider the states |�; j 〉〉 for � of (67) and each isospin
j of SU(2), obtained by summing the charges α over the Felder complex. Explicitly,

|�; j 〉〉 =
∑
α∈�j

κn1 |B(α,�)〉, (72)

where κn1 is a phase factor related to its bra counterpart κ ′
n1

through (75) 6 and the lattice �j is

�j : α(1) = −j

√
2

k + 2
− n1

√
2(k + 2),

α(2) = −im

√
2

k
− in2

√
2k, (73)

α(3) = m

√
2

k
+ n3

√
2k,

6 These phase factors may be determined in principle by BRST invariance of the boundary states [32]. Our
computation of correlation functions on disk topology below does not depend on such details since this factor can be
absorbed in the vacuum normalization on the disk.
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where

n1, n2 ∈ 1

2
Z, n3 ∈ Z,

n1 − n2 ∈ Z,
(74)

n1 � |n2|, −n1 > |n2|,
m ∈ 1

2
Z, 0 � m � 2k − 1

2
, j − m ∈ Z.

The lattice points of (73) contain a part indexed by (j,m), equal to the labels (35) of the
SU(2) primaries, and a part indexed by (n1, n2, n3), corresponding to periodic identifications.
In fact, the α(3) sector is precisely the U(1)k periodic lattice of (1). The lattice sums for n1

and n2 are those appeared in the parafermion character formula (49). The α(1), α(2) sector is
thus identified as the parafermion part.

The bra states 〈〈�; j | are constructed similarly, but with a phase factor κ ′
n1

in place of κn1 ,
satisfying

κ ′
n1

κn1 = (−1)2n1 sign(n1), (75)

where we define sign(0) = 1 as before. With these definitions it is obvious from (71) and the
character formulae (49), (50) that the overlaps between these states give the SU(2)k characters

〈〈�; j |q 1
2 (L0+L̄0− c

12 )|�; j ′〉〉 = χ
SU(2)
j (τ )δjj ′ . (76)

The states |�; j 〉〉 are hence regarded as the Ishibashi states of the SU(2)k model7.
These states are indexed by � as well as j . � is a generalization of the sign difference

in (1) and (2) which distinguishes the A- and B-type U(1)k Ishibashi states. So we expect
that � specifies the type of the boundary states in the SU(2)k theory. Indeed, with an explicit
calculation using the bosonic expressions of the SU(2) currents (21) and (28), we can show
that � is related to the current gluing conditions. In the present coordinates z, z̄, the boundary
is the unit circle z = z̄−1. Identifying

M = M̃, (77)

we see that on the boundary the Ishibashi states satisfy

[zJ±(z) − z̄�J̄∓(z̄)]|�; j 〉〉 = 0, (78)

[zJ 3(z) − z̄�J̄ 3(z̄)]|�; j 〉〉 = 0. (79)

If we map the unit disc onto the upper half plane, the above conditions reduce to the
standard form of the gluing automorphisms in the open string picture

J± + �J̄∓ = 0, J 3 + �J̄ 3 = 0. (80)

Note that these gluing conditions reduce to

J± + J̄∓ = 0, J 3 + J̄ 3 = 0 (81)

when M = diag(1, 1) and

J± + J̄± = 0, J 3 − J̄ 3 = 0 (82)

when M = diag(−1,−1), but cannot be written in simple forms in other cases.
In order to look into this in more detail, let us first focus on the A-type states of the

SU(2)k model, which are characterized by the trivial gluing conditions of the currents J a .

7 There remains some ambiguity due to the reflection symmetry of the Weyl group, which can be removed as
[26, 30] or [60].
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Consider the half-plane geometry where the A-type boundary condition is imposed on the
real axis and use the mirroring of [61]. The trivial current gluing conditions imply that
the anti-holomorphic currents J̄ a (on the ‘lower half plane’) are analytical continuations of
the holomorphic currents J a on the upper half plane. This allows us to map the CFT on the
half plane to a chiral CFT on the full plane. A p-point correlation function on the half plane
is then equivalent to a 2p-point function on the full plane. In particular, consider a one-point
function of a primary field �j,m(z, z̄) on the upper half plane, which is written as a two-point
function on the full plane:

〈�j,m(w, w̄)〉UHP,A = 〈�j,m(w)�j,−m(w∗)〉FP. (83)

Let us evaluate the left-hand side in the free-field representation. We first map the upper half
plane to the unit disc. Then we represent the primary operator �j,m(z, z̄) by Vj,m(z)V̄

†
j,m(z̄)

using the free-field representations (39), and represent the boundary with the boundary state
〈〈�; j |. The lhs is thus proportional to

〈〈�; j |Vj,m(z)V̄
†
j,m(z̄)|0, 0;α0〉. (84)

Note that we could, as well, have used one of the other vertex operator representations of (39).
The other representations would also lead to the same result as below, but require insertion
of screening operators, making the calculation a bit longer. The disc one-point function
(84) vanishes unless the left- and right-moving momenta are separately conserved (modulo
screening charges),

−α + αj,m = 0, (85)

−�T · α − 4α0ρ + α
†
j,m = 0, (86)

where α is one of the boundary momenta (Coulomb-gas charges) summed over in (72). It is
obvious that the above conditions are satisfied for α = αj,m only when � = diag(−1, 1, 1).
As the right-hand side of (83) is clearly non-vanishing, we conclude that A-type boundary
states correspond to � = diag(−1, 1, 1), and hence the A-type Ishibashi states in the SU(2)k
theory are written as

|A; j 〉〉 = |� = diag(−1, 1, 1); j 〉〉 (87)

(in fact, there is some freedom left, which we explain in the next subsection). With these
Ishibashi states the A-type Cardy states are constructed in the usual way as

|Ã; j 〉 =
∑
j ′

Sjj ′√
S0j ′

|A; j ′〉〉, (88)

where Sλµ, λ, µ = 0, 1
2 , . . . k

2 , is the SU(2)k modular S-matrix,

Sλµ =
√

2

k + 2
sin

(
π(2λ + 1)(2µ + 1)

k + 2

)
. (89)

3.2. One-point functions and rotation of branes

In the previous subsection we identified the A-branes by the condition (83), namely the
universal coupling between the Ishibashi states and the bulk primary operators. The obtained
states agree with what is known in the literature. In particular, one may reproduce overlaps
between these states by explicit free-field calculations. The above representation for the
A-branes (87) is, however, not general enough since the branes may be rotated within the
group without changing their properties. We argue that such rotations are implemented in
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the free-field representation by rotations between φ̄(2) and φ̄(3), namely the transformation ω

of (30) which keeps the value of the det M̃ constant.
In deriving (87) we have used the convention that the non-chiral primary operators have

equal (up to the conjugation αj,m ↔ α
†
j,m) left- and right-momenta. This condition can be

relaxed because instead of V̄α(z̄) we may use rotated anti-holomorphic vertex operators

�V̄α(z̄) ≡ exp(iα · ωφ̄(z̄)). (90)

Now, upon identifying M̃ of ω and M of �, we can see that charge neutrality is satisfied in the
one-point functions

〈〈�; j |Vj,m(z)�V̄
†
j,m(z̄)|0, 0;α0〉 (91)

for all � = −(1,M). This indicates that bulk primary fields transformed by (1 ⊗ ω) always
feel the states 〈〈�; j | as A-branes. We may thus allow a rotation of the right-moving part of the
bulk primary field and regard the branes rotated from (87), that is, |�; j 〉〉 with det M = +1, as
A-branes. In particular, � = diag(−1,−1,−1) also represents A-branes (with appropriately
rotated bulk operators). We will use this in the next subsection.

3.3. Parafermion and B-type SU(2)k boundary states

In the SU(2)k WZNW model there are known to be other kinds of branes called B-type,
which are constructed from A-branes by orbifolding and T-duality [10]. Before discussing
the B-branes in SU(2)k , let us consider the A- and B-type boundary states of the parafermion
model SU(2)k/U(1)k .

In the general SU(2)k Ishibashi state formula (72), one could clearly identify a sector
corresponding to the parafermions, and a sector corresponding to the U(1)k . Stripping off
the latter contribution then gives the Fock space representation of the A-type parafermion
Ishibashi states

|A; j, n〉〉PF =
∏
m>0

exp

{
− 1

m
a

(1)
−mā

(1)
−m +

1

m
a

(2)
−mā

(2)
−m

}
×

∑
α(1),α(2)∈�PF

j,n

κn1 |α(1), α(2), ᾱ(1) = 4α0ρ − α(1), ᾱ(2) = α(2);α0〉, (92)

where κn1 is the same phase factor as in the SU(2)k case. The parafermion charge summation
goes over the sublattice of (73),

�PF
j,n : α(1) = −j

√
2

k + 2
− n1

√
2(k + 2),

(93)
α(2) = −in

1√
2k

− in2

√
2k

where

n1, n2 ∈ 1

2
Z,

n1 − n2 ∈ Z, (94)

n1 � |n2|, −n1 > |n2|.
Consider then the expression in [10] for the A-type SU(2)k Ishibashi states as a

combination of the A-type parafermionic and U(1)k states,

|A; j 〉〉 =
2k−1∑
n=0

1 + (−1)2j+n

2
|A; j, n〉〉PF|A; n〉〉U(1). (95)
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If we substitute into this the expressions (92) and (1), we recover the formula (72). The
projection 1+(−1)2j+n

2 enforces the constraint j − m ∈ Z of (74).
The B-type Ishibashi states in the parafermion theory are defined in [10] using an operator

eiπJ̄ 1
0 which changes the sign of the J̄ 3

0 eigenvalue, as

(1 ⊗ eiπJ̄ 1
0)|A; j 〉〉 =

2k−1∑
n=0

1 + (−1)2j+n

2
|B; j, n〉〉PF|B; n〉〉U(1). (96)

In the free-field language, the action of the operator (1 + eiπJ̄ 1
0) (which flips the sign of n in the

above) is equivalent to replacing M by −M . Hence using the free-field representation (87),
the left-hand side of (96) is the SU(2)k A-type Ishibashi states with � = diag(−1,−1,−1).
Since the U(1)k part of these states is clearly the B-type, we can mod it out according to (96)
and find

|B; j, n〉〉PF =
∏
m>0

exp

{
− 1

m
a

(1)
−mā

(1)
−m − 1

m
a

(2)
−mā

(2)
−m

}
×

∑
α(1),α(2)∈�PF

j,n

κn1 |α(1), α(2), ᾱ(1) = 4α0ρ − α(1), ᾱ(2) = −α(2);α0〉, (97)

where the lattice summation is the same as for the A-type states (93), (94). The Cardy states
of the parafermion theory are constructed in the standard manner using the above free-field
representation for the Ishibashi states.

Finally, the B-branes of the SU(2)k theory are constructed from the A-type parafermion
states and B-type U(1)k states, or from the B-type parafermion states and A-type U(1)k states
[10]. For example, one may construct the B-type Cardy states of the SU(2)k model as

|B̃; j, η〉 =
√

k

k/2∑
j ′=0

Sjj ′√
S0j ′

[
1 + (−1)2j ′

2
|A; j ′, 0〉〉PF|B; 0〉〉U(1)

+ (−1)2j η
1 + (−1)2j ′+k

2
|A; j ′, k〉〉PF|B; k〉〉U(1)

]
, (98)

where η = ±1. In the above case the states have � = diag(−1, 1,−1), but in a
similar construction from B-type parafermion states and A-type U(1)k states we have
� = diag(−1,−1, 1). These two cases are connected by a rotation within the group, and hence
B-type SU(2)k boundary states are characterized by det M = −1. In summary, boundary
states with det M = +1 are considered as A-branes and det M = −1 as B-branes in the SU(2)k
model.

We comment on a subtlety arising in the distinction of A- and B-type branes. The A- and
B-type boundary states constructed above have desired properties that A-type branes couple
to bulk operators (with any magnetic quantum number m) universally, whereas B-type branes
couple only to operators with m = 0 up to reflection symmetry. These are fundamental
properties which distinguish A- and B-branes. However, we might as well use a (slightly
unnatural) convention such that the bulk primary fields are constructed from a holomorphic part
and its ‘twisted’ anti-holomorphic counterpart, that is, (90) with M̃ connected to diag(+1,−1)

by rotation. In this case the roles of branes with det M = ±1 are completely exchanged, and
we must regard det M = +1 states as type B and det M = −1 as type A since the A- and
B-branes are entirely symmetric (e.g. the overlaps between them) except for the coupling with
bulk operators. In this sense the definitions of A- and B-branes are relative, and depend on
how to define bulk non-chiral operators.
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4. Correlation functions, chiral blocks and boundary states

The Coulomb-gas computation of WZNW correlation functions was developed in [37, 38,
43, 47, 45] and was extended to higher topologies in [40, 42, 44, 46, 49]. In this section we
apply this technique to the computation on the disc topology, where the boundary condition
is represented by the boundary states which have been discussed in the previous section. As
physical boundary conditions are realized by the Cardy states, a p-point function on the unit
disc which we shall consider is given by

〈Cardy state|V1(z1)V̄1(z̄1) · · · Vp(zp)V̄p(z̄p) (screening operators)|0, 0;α0〉, (99)

where |0, 0;α0〉 is the SL(2, C) invariant vacuum at the centre of the disc. The free-field
representations of the boundary states, the primary operators and the screening operators
have already been given. Thus the above expression can be straightforwardly evaluated in
the free-field formalism, i.e. with repeated use of the Heisenberg algebra and the Baker–
Campbell–Hausdorff formula.

A few technical remarks for the actual computation are in order [26, 27]. Firstly, we
are allowed to insert different numbers of screening operators in holomorphic and anti-
holomorphic sectors although this might seem odd from the mirroring (or doubling) picture of
[61]. The reason for this is that the mirroring argument is based on the analytic continuation
of the holomorphic and anti-holomorphic currents, but the screening operators have by
construction trivial effects on the currents of the chiral algebra; in other words, the mirror
does not see the screening operators. The second point is that, as the boundary has charges,
the neutrality condition of the Coulomb-gas charges must now take the contributions from the
boundary into account. The Cardy states constructed in the last section are linear sums of
the states 〈B(α,�)| which have a holomorphic charge −α and an anti-holomorphic charge
−(�T ·α + 4α0ρ) (recall that 〈α, ᾱ;α0| and |α, ᾱ;α0〉 have opposite charges). The correlation
function (99) thus reduces to a sum of the amplitudes

〈B(α,�)|V1(z1)V̄1(z̄1) · · · Vp(zp)V̄p(z̄p) (screening operators)|0, 0;α0〉, (100)

whose holomorphic and anti-holomorphic charges must be independently neutral:

−α + α1 + · · · + αp + (holomorphic screening charges) = 0, (101)

−(�T · α + 4α0ρ) + ᾱ1 + · · · + ᾱp + (anti-holomorphic screening charges) = 0. (102)

Otherwise the amplitudes vanish. The neutrality of charges corresponds to consistency of
fusion rules among the primary operators [48], and non-vanishing amplitudes (100) are
interpreted as chiral blocks [26].

Below we shall give sample calculations based on these observations. We focus on simple
two-point functions of the SU(2)k model and explain the method for both A- and B-type Cardy
states.

4.1. A-branes in SU(2)k model

Let us first consider a general two-point function of bulk primary operators �j1,m1(z1, z̄1)

and �j2,m2(z2, z̄2) on the unit disc. On the boundary of the disc we assume the A-type
Cardy states 〈Ã; j |. The calculation for the A-type boundary is entirely straightforward and
parallel to the corresponding four-point case on the full plane (e.g. [47]). This, of course,
is expected since the trivial current gluing conditions implied by the A-type boundary allow
analytic continuation of the chiral currents to the full plane, and then the correlation function
we are considering must satisfy the same Knizhnik–Zamolodchikov equations as for the chiral
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Φj2,m2 Φj1,m1

Φ̄j2,m2 Φ̄j1,m1

Φj,m

Figure 2. Chiral block for a two-point function on the half plane. The intermediate state �j,m

occurring as a fusion product of �j1,m1 and �j2,m2 couples to the corresponding Ishibashi state on
the boundary.

four-point function on the full plane. We shall choose the vertex operator representation of
the bulk operators as

�j1,m1(z1, z̄1) : Vj1,m1(z1)V̄j1,m1(z̄1),
(103)

�j2,m2(z2, z̄2) : Vj2,m2(z2)V̄
†
j2,m2

(z̄2);
see section 2 for their definitions. We might choose other representations from the ones
listed in (39) but they are equivalent (and involve unnecessarily many screening operators
in following computations). Given holomorphic and anti-holomorphic boundary charges −α

and −ᾱ = −4α0ρ − �T · α (note that we now have � = diag(−1, +1, +1) for the A-branes),
the sums of the bulk and boundary Coulomb-gas charges in (100) are

Holomorphic : −α + αj1,m1 + αj2,m2 , (104)

Anti-holomorphic : −4α0ρ − �T · α + αj1,m1 + α
†
j2,m2

. (105)

Now we ask whether these charges are screenable, that is, whether it is possible to neutralize
them by inserting screening operators. It is a simple exercise to check that the both sectors are
neutralized by n holomorphic screening operators

Q1 =
∮

dz ∂φ(2) ei
√

2
k+2 φ(1)

, (106)

and (l − n) anti-holomorphic screening operators

Q̄1 =
∮

dz̄ ∂̄ φ̄(2) ei
√

2
k+2 φ̄(1)

, (107)

where l = 2j1 and n = 0, 1, . . . , l. For each n, the charge α on the boundary is found to be

α =
(

(n − j1 − j2)

√
2

k + 2
,−i(m1 + m2)

√
2

k
, (m1 + m2)

√
2

k

)
. (108)

Note that the values of α reflect the fusion of the SU(2)k primary fields

�j1,m1 × �j2,m2 =
min(j1+j2,k−j1−j2)∑

j=|j1−j2|
j1+j2+j∈Z

�j,m=m1+m2 . (109)

The neutrality of charges implies that the resulting intermediate state �j,m couples to the
boundary, only via the corresponding Ishibashi state 〈〈A; j | (figure 2). Using the expression
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boundary
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Figure 3. Integration contours of chiral blocks for A-branes.

of the A-type Cardy states (88), the two-point function is written as a linear combination of
chiral blocks 〈

�j1,m1(z1, z̄2)�j2,m2(z2, z̄2)
〉
disc,Ã,j

=
√

S00

Sj0

∑
j ′

Sjj ′√
S0j ′

IA
j ′,m, (110)

where m = m1 + m2 and

IA
j ′,m = 〈B(α,�)|Vj1,m1(z1)V̄j1,m1(z̄1)Vj2,m2(z2)V̄

†
j2,m2

(z̄2)Q
n
1Q̄

l−n
1 |0, 0;α0〉. (111)

The overall factor
√

S00/Sj0 = 〈Ã; j |0, 0;α0〉−1 comes from the normalization of the vacuum.
The boundary charge α is as in (108) and n = j1 + j2 − j ′,� = diag(−1, +1, +1). The
screening charges yield n-tuple integration in the holomorphic and (l − n)-tuple integration
in the anti-holomorphic sector. The contours are initially those of Felder’s, but following [48]
one may deform them into∫

C1

dt1 · · ·
∫

Cn

dtn

∫
S1

ds1 · · ·
∫

Sl−n

dsl−n, (112)

where Ci and Si are as shown in figure 3. The chiral blocks (111) are then written by the
standard Dotsenko–Fateev integrals.

These involve l screening operators in total and hence there are l+1 independent choices of
contours depending on how many of them are in the holomorphic sector. As the configuration
of the screening charges is now related to the Ishibashi states through (108), we expect that
for each Ishibashi state there corresponds one of the l + 1 independent solutions [47, 62]
of the Knizhnik–Zamolodchikov equations. Let us see this in a specific example where
j1 = j2 = 1/2,m1 = 1/2 and m2 = −1/2. In this case the number of the screening charges
is l = 1, and hence n can be either 1 or 0. When n = 1, from (108) we see that α = (0, 0, 0),
which is in the lattice sum of the A-type Ishibashi state 〈〈A; j = 0|. Using the free-field
formalism, we may express the chiral block as

IA
0,0 = const × z

1
2(k+2)

1 z̄
− 3

2(k+2)

1 (1 − ξ)
1

2(k+2)

∮
dt (z1 − t)−

1
k+2 t−

1
k+2 (1 − z̄1t)

− 1
k+2

×
{

1

t
+

1

z1 − t
− z̄1

1 − z̄1t

}
, (113)

where ξ ≡ z1z̄1 is a cross ratio and we have used the global conformal invariance to set
z2 = z̄2 = 0. Changing the holomorphic contour into∮

dt →
∫ z1

0
dt, (114)
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the chiral block is found in the form using a hypergeometric function

IA
0,0 = C0,0ξ

− 3
2(k+2) (1 − ξ)

1
2(k+2) F

(
1

k + 2
,
k + 1

k + 2
,

k

k + 2
; ξ

)
. (115)

The normalization constant C0,0 is identified as the three-point coupling constant in the operator
product expansion

�1/2,1/2(z, z̄)�1/2,−1/2(0, 0) = C0,0�0,0(0, 0)|z|− 3
k+2 + C1,0�1,0(0, 0)|z| 1

k+2 · · · . (116)

In the off-boundary limit the chiral block agrees with the bulk two-point function. For
n = 0 we have one screening charge in the anti-holomorphic sector and (108) becomes
α = (−√

2
k+2 , 0, 0

)
. This boundary charge is included in the Ishibashi state 〈〈A; j = 1|,

indicating the intermediate state of the chiral block being �1,0. The evaluation of the chiral
block goes similarly as above, giving

IA
1,0 = C1,0ξ

1
2(k+2) (1 − ξ)

1
2(k+2) F

(
3

k + 2
,
k + 3

k + 2
,
k + 4

k + 2
; ξ

)
. (117)

These results can be compared with the solutions of the Knizhnik–Zamolodchikov equations
[62]. The chiral blocks (115) and (117) are two independent solutions which are now related
to the Ishibashi states 〈〈A; j = 0| and 〈〈A; j = 1|, respectively. The two-point function on
the disc is now written as a linear sum of these chiral blocks

〈�1/2,1/2(z1, z̄1)�1/2,−1/2(z2, z̄2)〉disc,Ã,j = IA
0,0 +

Sj1

Sj0

√
S00

S01
IA

1,0. (118)

There is another type of two-point function for isospin j = 1/2, but with m1 = m2 = 1/2.
They are computed similarly as

〈�1/2,1/2(z1, z̄1)�1/2,1/2(z2, z̄2)〉disc,Ã,j = IA
0,1 +

Sj1

Sj0

√
S00

S01
IA

1,1, (119)

where the two chiral blocks are

IA
0,1 = C0,1ξ

2k+1
2(k+2) (1 − ξ)

1
2(k+2) F

(
k + 3

k + 2
,
k + 1

k + 2
,

2k + 2

k + 2
; ξ

)
(120)

and

IA
1,1 = C1,1ξ

1
2(k+2) (1 − ξ)

1
2(k+2) F

(
1

k + 2
,

3

k + 2
,

2

k + 2
; ξ

)
. (121)

The constants C0,1 and C1,1 are the three-point coupling constants of the bulk primaries

�1/2,1/2(z, z̄)�1/2,1/2(0, 0) = C0,1�0,1(0, 0)|z|− 3
k+2 + C1,1�1,1(0, 0)|z| 1

k+2 · · · . (122)

4.2. B-branes in SU(2)k model

The method discussed above may be applied to the B-branes without difficulty. Consider
SU(2)k B-branes constructed from A-branes by T-dualizing in the direction of U(1)k , i.e.
(98). They are characterized by � = diag(−1, 1,−1). It is discussed in [10] that these
B-branes couple only to primary fields with particular values of m. Let us see how this

happens in the Coulomb-gas language. As the Cardy states 〈B̃; η, j | are linear sums of the
states 〈B(α,�)|, we consider the one-point amplitude for a primary operator �j,m(z, z̄),

〈〈B(α,�)|Vj,m(z)V̄
†
j,m(z̄)(screening operators)|0, 0;α0〉, (123)
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where � = diag(−1, 1,−1). The holomorphic and anti-holomorphic Coulomb-gas charges
of the above one-point amplitude are respectively

−α + αj,m + (holomorphic screening charges), (124)

−4α0ρ − �T · α + α
†
j,m + (anti-holomorphic screening charges). (125)

The amplitude (123) is non-vanishing only when the net charge in each sector is neutral.
Examining this condition using the expression of αj,m and � = diag(−1, 1,−1), we find
that the neutrality conditions are possible only when m = 0 up to the reflection and periodic
symmetry. Hence the B-branes couple to primary fields with m = 0 (up to symmetry) only.
We have used a particular vertex operator representation of the primary field from (39) here,
but this property should be independent as all the vertex operator representations are equivalent
modulo insertion of the screening operators.

Let us now turn to sample computations of two-point functions for the B-branes. For
simplicity we focus on the j1 = j2 = 1/2 case as in the previous subsection and restrict to
k > 1. Using the same vertex operator representations (103) as A-branes, the chiral blocks
are computed similarly, but this time with � = diag(−1, 1,−1). The neutrality of Coulomb-
gas charges constrains the values of the charges on the boundary and the configurations of
the screening operators (i.e., how many of them are in the holomorphic/anti-holomorphic
sectors). In the case of m1 = 1/2 and m2 = −1/2, the neutrality conditions are satisfied in
two cases: when α = (0, 0, 0) and when α = (−√

2
k+2 , 0, 0

)
. The former case corresponds

to the intermediate state �0,0 and the amplitude, including one holomorphic screening charge
Q1, is computed as

IB
0,0 = C0,0ξ

− 3
2(k+2) (1 − ξ)

3k+4
2k(k+2) F

(
1

k + 2
,
k + 1

k + 2
,

k

k + 2
; ξ

)
. (126)

In the latter case, which corresponds to intermediate �1,0, there is one screening charge Q̄1 in
the anti-holomorphic sector and we find the amplitude

IB
1,0 = C1,0ξ

1
2(k+2) (1 − ξ)

3k+4
2k(k+2) F

(
3

k + 2
,
k + 3

k + 2
,
k + 4

k + 2
; ξ

)
. (127)

The constants C0,0 and C1,0 are the same as those for the A-brane cases. The two-point
function for B-type Cardy states are then written as linear combinations of these chiral blocks;
using (98) we find

〈�1/2,1/2(z1, z̄1)�1/2,−1/2(z2, z̄2)〉disc,B̃;j,η = IB
0,0 +

Sj1

Sj0

√
S00

S01
IB

1,0. (128)

In the off-boundary limit this has the same asymptotic behaviour as the A-brane counterpart.
When m1 = m2 = 1/2, the neutrality condition of the charges can never be satisfied for the
B-branes, marking a sharp contrast to the A-brane case. This indicates that the two-point
function for the B-branes identically vanishes,

〈�1/2,1/2(z1, z̄1)�1/2,1/2(z2, z̄2)〉disc,B̃;η,j
= 0. (129)

This result is reasonable as the fusion of �1/2,1/2 and �1/2,1/2 generates m = 1 states which
do not couple to B-branes.

5. Discussion

In this paper we have discussed free-field realization of SU(2)k and parafermion boundary
states based on the Coulomb-gas picture and presented a method to compute correlation
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functions involving such boundaries. The formalism naturally includes the so-called B-type
boundaries of both SU(2)k and parafermion models. The examples of chiral blocks computed
for SU(2)k A-branes are solutions of the Knizhnik–Zamolodchikov equations, and it can
be checked that the obtained correlation functions have appropriate clustering properties.
Although we have not given explicit examples in this paper, the technique for finding exact
correlation functions in the disc topology also applies to the Zk parafermion theory (with the
primary fields of (41)). As the N = 2 supersymmetric minimal models [63–69] differ from
the SU(2)k WZNW model only by the U(1)k compactification radius, we expect that the same
technique should also apply to these models without much difficulty.

We comment on similarity between the boundary states of the SU(2)k model and those
of the critical 3 state Potts model, which is a spin system having a Z3 symmetry and is
described by a CFT at c = 4/5 [70]. The Potts model is known to have a W3 symmetry
and is diagonal with respect to this W -algebra symmetry. There are six conformally invariant
boundary states which also conserve the W -symmetry, and they are identified as three fixed
and three mixed boundary conditions of the spin system [16]. In addition this model has two
boundary states which conserve the conformal symmetry but break the W -symmetry. These
two boundary states are interpreted to represent the free boundary condition and the so-called
new boundary condition, which is found in [71]. It has been shown in [72] that these eight
states are complete in the sense of [20]. Free-field representations of the Potts model boundary
states are constructed and correlation functions involving such boundaries are computed in
[27]. The obtained correlation functions are all consistent with the physics of the spin system.
The free-field representation of the Potts model consists of two bosons and in [27] twelve
boundary states are constructed, six of them corresponding to det � = 1 and W -conserving,
the other six to det � = −1 and W -breaking, where � is a matrix similar to ours but is 2 × 2
for the Potts model. Out of the six W -breaking boundaries four of them decouple from the rest
of the theory, and only the two—corresponding to the free and new boundary conditions—can
be seen in the analysis of [71, 72]. Clearly this situation is familiar to us; the W -breaking
boundaries correspond to B-branes, and apart from some special cases (‘free’ and ‘new’ in
the Potts model, m = 0 and its identification images in the SU(2)k model), the symmetry
breaking boundaries decouple from the rest of the theory. This of course is not surprising
since, as is well known, the three-state Potts model can be seen as the Z3 parafermions.

By construction the boundary states we have formulated in this paper give desired overlaps.
Besides, so far as we have checked the Coulomb-gas computation yields reasonable correlators
on the disc topology. There are, however, a few subtle details in the formulation of boundary
states which have not been settled in this paper. Firstly, we have considered states on the
non-chiral Hilbert spaces which are simply direct products of left and right, H ⊗ H̄. In the
standard definition [16, 17], however, the Ishibashi states are built on asymmetric Hilbert
spaces

H ⊗ UH̄, (130)

where U is an antiunitary operator. This operator U acts non-trivially on the SU(2) currents,
and as a consequence our expressions of the gluing conditions (80) differ from some of the
standard literature. If we wish we could have, for example, defined the operator � (and
also ω) as antilinear, rather than linear, and adopted definitions of non-chiral Hilbert spaces
which are closer to the traditional one (130). The second subtle point in our formulation is
the BRST structure on which the lattice sums are based; in the three boson formulation of
the SU(2)k model which we have used, so far as we know there seems to be no proof in the
literature of the Felder’s theorem, that is, triviality of the cohomology space on Fr,s except
(r, s) = (l, n) that was needed to derive (49). The technique described in this paper would
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be generalizable, for example, to SU(N) cases but for higher N the BRST structure should
be more and more complicated. Thirdly, although it is straightforward to write down integral
expressions of correlation functions on the annular topology, i.e. with two boundaries, we
have not checked if these expressions satisfy various constraints for consistency. It is certainly
worthwhile investigating in this direction more carefully. Finally, once the basic Coulomb-gas
formulation of D-branes has been established, there are numerous more general directions to
explore. We hope to come back to these issues in future publications.
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